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Abstract e 

The tvo-center %A0 method, vhich has been used frequent ly  i n  the  

past  t o  study t h e  motion of e lectrons i n  sol ids ,  i s  used here t o  invest i -  

ga te  t h e  nature of bonding betveen atoms i n  T i c .  

contr ibut ions t o  t h e  bonding i n  t h i s  mater ia l  arise from metal-metal in te r -  

ac t ions  similar t o  those i n  the  t r a n s i t i o n  metalso I n  Tic, hovever, these  

in te rac t ions  a r e  strengthened by t h e  e f f e c t  of carbon atom core poten t ia l s  

It i s  found t h a t  prominent 

i n  t he  regions of overlap betveen metal o rb i t a l s .  Moreover, t he  number of 

e lectrons pa r t i c ipa t ing  i n  such in te rac t ions  i s  increased by electrons t rans-  

f e r r e d  from-carbon t o  metal o rb i t a l s .  

covalent character,  i s  contributed by the carbon atoms as a r e s u l t  of metal- 

Additional bonding, v i t h  subs tan t ia l  

carbon and carbon- carbon in t e rac t  ions * 

because of t h e  e lec t ron  t r a n s f e r  betveen atoms, but they appear t o  contr ibute  

Ionic  in t e rac t  ions a l s o  are present. . 

- l i t t l e  t o  the cohesive energ) 01 T i c .  

These r e s u l t s  provide support f o r  proposals advanced by Kiessling 

and by Robins t o  explain t h e  bonding i n  re f rac tory  hard metals. 

i n  accord K i t h  t he  explanation offered by Rundle. 

They are not 

It i s  suggested t h a t  t h e . c l o s e  re la t ionship  between band s t ruc ture  

and bonding i l l u s t r a t e d  here f o r  T i c  can be used t o  advantage a l s o  i n  s tud ies  

of. the  bonding i n  t r a n s i t i o n  metals and i n  other mater ia ls  t h a t  exhibi t  com- 

plex bonding charac te r i s t ics .  



Band St ruc ture  and Bonding i n  Titanium Carbide. 

I. Introduction. 

The proper t ies  of so l id s  may be described e i t h e r  i n  t e rns  of energy 

bands o r  i n  terms of chemical bonds. Although accurate ca lcu la t ions  of e lec-  

t ron ic  energy bands i n  a s o l i d  provide s u f f i c i e n t  information t o  explain 

many physical  propert ies ,  the r e s u l t s  of such calculat ions a re  somewhat un- 

s a t i s f a c t o r y  f o r  v i sua l i z ing  the bonding between atoms of the s o l i d .  The 

chemical bond approach, on the o ther  hand, although l e s s  s a t i s f a c t o r y  f o r  

quant i ta t ive  ca lcu la t ions  of physical  propert ies ,  does provide a use fu l  

4 

representat ion of the bonding. 

Severa l  years ago, Hall (1) and S l a t e r  (2) suggested ways i n  which 

c r y s t a l  wave funct ions determined from energy band ca lcu la t ions  might be coin- 

bined t o  generate equivalent bond .orbi ta ls  c lose ly  r e l a t ed  t o  those used i n  

the chemical bond descr ipt ion,  but l i t t l e  use appears t o  have been made of 

t h i s  correspondence between the two approaches. One reason f o r  t h i s  is  the 

f a c t  t h a t  the equivalent o r b i t a l s  of ten  a re  not describable i n  simple f o r a .  

Nevertheless, even a q u a l i t a t i v e  ana lys i s  of the bonding may be valuable f o r  

understanding c e r t a i n  phys ica l  propert ies ,  p a r t i c u l a r l y  of those compounds 

i n  which complex mixtures of various types of bonding gccur. The purpose of 

t h i s  paper i s  t o  present  f o r  one such compound, Tic ,  a preliminary descr ip t ion  

of the bonding which has been obtained d i r e c t l y  from ca lcu la t ions  of i t s  energy 

band s t ruc tu re .  The present  descr ip t ion  i s  incomphte because only those COD- 

ponents of_.the equivalent  o r b i t a l s  have been included tha t  provicle the more 
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prominent contributions t o  bonding, Subsequent work, however, w i l l  be 

d i rec ted  toward ca lcu la t ion  of complete equivalent o r b i t a l s  i n  the  manner 

suggested by S l a t e r  and H a l l .  

T i tan ium carbide w a s  chosen f o r  t h i s  study because the nature of 

i t s  bonding has been the subject  of speculation for many years. 

of the more familiar members of a group of substances, commonly re fer red  t o  

as ref rac tory  hard metals, t h a t  a r e  formed by react ing a t r a n s i t i o n  metal 

from Groups IV t o  V I  with one of the small n o m e t a l l i c  elements such as 

It i s  one 

boron, carbon, nitrogen, and oxygen. The unusual propert ies  of these com- 

pounds have been discussed i n  d e t a i l  by Schwarzkopf and Kieffer (3) and by 

Kieffer  and Eenesovsky (4) : 

hardness cha rac t e r i s t i c  of such covalent so l id s  as dimond, they exh ib i t  

e l e c t r i c a l  conduct ivi t ies  comparable with those of tine parent t r a n s l t l o n  

Together with the high melting point and grea t  

metals (5). Such a combination of covalent and a e t a l l i c  properties has l e d  

t o  r a the r  divergent opinions regarding the nature of these compounds. 

Possibly the earliest  consideration given t o  the problem occurred i n  

1931 during Ubbelohde ' s  study (6) of the  palladim-hydrogen system, from which 

he infer red  t h a t  hydrogen donated electrons t o  f i l l  holes i n  the  d band of 

palladium. Ubbelohde then suggested t h a t  nonmetal atoms i n  other  i n t e r s t i t i a l  

compounds of the t r a n s i t i o n  metals might behave i n  thz same way. 

T4nanskii (7) discussed the  hardness of i n t e r s t i t i a l  phases and the  e l ec t ro -  

migration.of carbon ana ni t rogeb i n  i ron.  

I n  1943, 

c 

He concluded t h a t  Ubklohde's views 

applied i n  these circumstances also. Rundle, on the other  hand, proposed i n  

1948 (8) t h a t  for re f rac tory  hard metals the.  e lec t ron  t r ans fe r  w a s  i n  the  other  
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direct ion,  tha t  is, from the metal t o  the nometa l  aton. He argued tha t ,  

because the metal-metal atom spacings generally are grea te r  i n  the  refrac-  

t o ry  hard metals than i n  the parent t r ans i t i on  metals, the metal-metal 

bonds nust  be weaker i n  the hard metals than they are i n  the parent metals, 

Thus, he suggested tha t  e l e c t r m s  m u s t  have been l o s t  from the metal-metal 

bonds, and accordingly a t t r i bu ted  the increased melting points, hardness and 

b r i t t l eness  of the hard metals t o  the formation of strong d i rec t iona l  bonds 

between metal and nonmetal atoms, 

(9) inclicated, however, t h a t  e lectrons are t ransferred from the nometa l  t o  

the metai atom. 

Subsequent experimental work by Kiessling 

Kiessling (lo), i n  1957, proposed, therefore, t h a t  the  

bonding in hard metals is e s sen t i a l ly  metall ic i n  nature, but suggested t h a t  

covalent and ionic  bondipd a l so  may be present i n  Certain of these compounds. 

Robins (11) presented a s imi la r  model f o r  the bonding i n  1958, but emphasized 

the e f f e c t s  of e lec t ron  concentration and coordination of the metal atoms. 

I n  1958, B i l z  (12) attempted t o  dis t inguish between the  a l te rna t ives  

of strong metal-nonmetal bonding (Rundle) and strong metal-netal' bonding 

(Kiessling and Robins) by considering the properties expected i n  each case 

f o r  a (hypothetical)  t i tanium hard metal, TIX, re la ted  t o  T ic ,  TiN, and TiO, 

and having the same rocksal t  s t ruc ture .  For each type of bonding, he e s t i -  

mated the d i s t r ibu t ion  i n  energy of e lectronic  s t a t e s  i n  a molecular uni t ,  

Pi6X, having the same atonic configuration t h a t  it would have i n  a c r y s t a l  

of TiX. The resu l t ing  density-of-states curves were compared with an equiva- 
c 

l e n t  curve obtained from a calculat ion of the e lec t ronic  energy band s t ruc -  

ture  f o r  the hypothetical  TiX c rys t a l .  This calculat ion w2s  performed following - 



- 4 -  

the  simplified LCAO ( l i nea r  combination of atomic o r b i t a l s )  method of S l a t e r  

and ICoster (13), which w i l l  be discussed l a t e r .  

of TiX required i n  the  calculat ion,  B i l z  used values estimated from previous 

calculat ions f o r  n icke l  and copper; f o r  the one-electron energies of the X 

For the in te rac t ion  in t eg ra l s  

. 
atom he used the  average of values f o r  carbon, nitrogen, and oxygen. He con- 

cluded t h a t  the density-of -states curve obtained from t h i s  ca lcu la t ion  rep= - 
sented an intermediate condition i n  which the bonding included both - metal-metal 

and metal-nonmetal interact ions.  H i s  band s t ruc ture  requires a subs t an t i a l  

t r a n s f e r  of exectrons from s t a t e s  of the metal atom t o  states of the nonmetal 

atom, and thus supports the model proposed by Rundle. 

Dempsey (5), i n  1963, presented arguments t h a t  support Kiessling's des- 

c r i p t i o n  of the re f rac tory  hard metals. Dempsey discussed similarities between 

the  propzrt ies  of t r a n s i t i o n  Ketals and r e fme to ry  hard metals t h a t  have approxi- 

mately equal numbers of d e lec t rons .  He concluded t h a t  the close cor re la t ions  

observed could be accounted for if (i) the  bonding i n  re f rac tory  hard metals is 

similar t o  that i n  t r a n s i t i o n  metals, and (ii) electrons a re  transferred L t o  the 

t r a n s i t i o n  metal d band from - t h e  nonmetal atoms. 

covalent bonding involving the nonmetal atoms does not 'play an  important role;  

thus,  h i s  analysis  leads t o  conclusions almost opposite t o  those of Rundle. 

Dempsey suggested a l s o  t h a t  

More recent ly  (1964), Costa and Conte (14) computed band s t ruc tures  

Their f o r  TiC and T i N  using t h e  F le tcher  (15) approach t o  the LCAO method. 

calculat ions indicated a considerable strengthening of the  in te rac t ions  between 

metal d o rb i t a l s  by t h e  po ten t i a l  of carbon atoms located i n  t h e i r  v i c i n i t y  - 
an importan_t e f f e c t  which had not been considered previously. Accordingly Costa 

*. 
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and Conte suggested t h a t  metal-metal interact ions were more important than 

B i b  had supposed, but  they acknowledged t h a t  f e w  experimental da ta  then 

avai lable  contradicted Ei lz  ' s  band s t ruc ture .  

Jn 1965, Ern and Switendick (16) computed separate band s t ruc tures  

for Tic ,  TiN, and Ti0 using the  APW (augmented plane mve)  method. Their 

results supported i n  most respects the e a r l i e r  calculat ions by B i b .  

Unfortunately, these models f o r  the re f rac tory  hard metals could not 

be evaluated adequately i n  the  past because of the lack of appropriate 

experimental data .  Recently, however, some of the  required information has 

been made avai lable  f o r  T i c  fran Logothetis'  (17) determination of i t s  op t i ca l  

propert ies  over a wide range of photon energies,  These da t a  have been used by 

Lye (17) t o  guide new E A 0  caJculations of an e lec t ronic  energy band s t ruc ture  

for this riiaterial, and the  r e su l t s  have been employed t o  develop a uescr ipt ion 

of the  bonding i n  T i c .  'Although t h i s  new band s t ruc ture  is  markedly d i f f e ren t  

from those obtained from previous calculat ions,  the nature of the bonding it 

implies includes aspects of most of the  e a r l i e r  descriptions,  differing from 

them p r i u a r i l y  i n  emphasis. 

I n  the  present paper, the LCAO method and i t s  E l a t i o n  t o  familiar 

concepts of bonding w i l l  be described i n  Section 11. The band s t ruc ture  f o r  

TiC computed using t h i s  method id11 then be discussed i n  Section 111, and a 

qua l i t a t ive  descr ipt ion of the  bonding inferred from the calculat ions w i l l  be 
c. 

given i n  Sect ion IV. This model f o r  the bonding i n  T i c  w i l l  be discussed 

with reference t o  i t s  physical properties i n  Section V. 
/ 
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11. Band Structure  Calculations by the LCAO Method. 

A useful approximation t o  the  electron energy band s t ruc ture  of T i c  

may be obtained using the s impljf ied two-center E A 0  ( l i nea r  combination of 

atomic o r b i t a l s )  method suggested by S l a t e r  and Koster. 

. -  

The LCAO method has 

k e n  described extensively elsewhere (132 18-22); only qua l i ta t ive  aspects 

w i l l  be discussed here. I n  t h i s  discussion, however, mathematical arguments 

w i l l  be presented, where possible, i n  p i c t o r i a l  form t o  illustrate t h i s  techni- 

que f o r  compuk.ing e lec t ronic  energy bands and t o  demonstrate v i sua l ly  the 

bonding which results from interact ions between atomic o r b i t a l s .  

I n  the  LCAO approximation, c r y s t a l  wave functions are constructed from 

atomic wave functions (o rb i t a l s )  which are centered on the s i t e s ,  R 

cqys ta l  l a t t i c e .  The atomic o rb i t a l s  contribute t o  the c r y s t a l  wave function 

of the J’ 

of wave vector  k according t o  the complex weighting f a c t o r  exp(ik.R.), which 

es tab l i shes  f o r  each value of k and R .  t h e  phase of the o r b i t a l  a t  R .  wi th  
J 

J J 
respect t o  the one on the atom chosen as the  origin.  Spherical ly  symmetric 

atomic s functions, c p ( r ) ,  f o r  example, form c r y s t a l  wave functions, Gs(k,r}, 

which are represented (as Bloch functions) i n  the form: 

ib,(k,r). = C exp(ik.R.)qS(r-R.). 
J J 3 

That is, around each aton of the solid,  a t  the l a t t i c e  s i t e s  sbeled R the  

c r y s t a l  wave function looks much l ike  the or ig ina l  atomic s function. I n  

par t icular ,  at  the center  of the Bri l louin zone (k=O), t he  c r y s t a l  wave function 

c. J’ 

/ 
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i s  approximately an a r r ay  of atomic s functions with the same phase on each 

atomic s i te ,  as shown i n  Fig. 1 f o r  a simple cubic c rys ta l .  (The o r b i t a l s  

are drawn reduced i n  s i z e  f o r  c l a r i t y ;  some overlap be twen  them i s  neces- 

s a ry  t o  permi+. in te rac t ions  t o  occur. ) 

Atomic o r b i t a l s  on one atom overlap onto adjoining atoms and i n t e r -  

a c t  .with the o rb l t a l s  on those atoms through the t o t a l  potent ia l ,  

V ( r )  = C Va(r-Rg), which is the sum of atomic potent ia ls ,  Va(r-R ), from 

all the  neighboring atoms, The s t R n g t h  of the  interact ion,  J(RB), between 

the  wave functions pA(r) on atom A and cpg(r-R } on atom B, displaced by the 

3#0 s 

B 

vector  RB from A, is determined by integrat ing the products of the  wave func- 

t i ons  and the po ten t i a l  over the volume of the crystal, 7, i n  which the wave 

functions overlap: 

I n  the  two-center approximation, the pr inc ipa l  contr ibut ion t o  the 

po ten t i a l  is assumed t o  arise f r o u  just the atom on which the in te rac t ing  

wave funct ion resides.  This s implif icat ion permits the in te rac t ions  t o  be 

described i n  terms of the two-center integrals ,  

familiar from the  s tudy of diatomic molecules. Moreover; t h i s  approach leads 

d i r e c t l y  t o  a p i c t o r i a l  representation of the  bonding i n  so l id s  which i s  c lose ly  

analogous-to . the coumon ‘description of bonding i n  molecules. 
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I 

in I 
I 
I 
1 

Fig. 2. - In te rac t ions  between atomic o r b i t a l s :  (a) bonding, (b) antibonding. 
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For the purposes of t h i s  discussion, i t  i s  necessary t o  employ a 

spec i f ic  meaning f o r  the term "bonding". 

of ways i n  the literature, sometimes w i t h  e s sen t i a l ly  the same meaning as 

cohesive energy. However, a d i s t inc t ion  w i l l  be made between the two terms 

i n  what i s  t o  follow: 

designate the  difference (at OOK) between the energy of one mole of i so la ted  

atoms and the energy of those atoms when assembled i n  the periodic configura- 

t i o n  they assume i n  the  s o l i d  state. 

on the other  hand, w i l l  be used t o  describe interact ions between atoms i n  the 

s o l i d  array.  Bonding due t o  e l ec t ros t a t i c  interactions between atoms is  the 

familiar ionic  bonding, and can be correlated with t'ne ionic contribution t o  

the  cohesive energy. The electronic  contribution t o  bonding results from 

interact ions between wave functions associated with d i f fe ren t  atoms and can 

The term has been used i n  a va r i e ty  

.. 

Cohesive energy will be used i n  the usual way t o  

The terms "bonding" and 'hntibonding", 

be e i t h e r  bonding o r  antibonding. Overlap of functions with the same s ign  

decreases their energy by increasing the amplitude near the boundary of the 

polyhedron surrounding the  atom and decreasing the amplitude inside (since 
D 

Ipq-12~ i s  a constant within the  polyhedron), 

by the overlap, as shown in Fig. 2(a); thus, the k ine t ic  energy, 

The wave fucriction is made smoother 

-ti2 ' 2  Ilgradql d7, is  decreased (18). The mount of t h e  decrease i s  determined 

by the magnitude of the two-center i n t e g r a l  representing t h i s  interact ion.  

Bonding tha t  r e su l t s  frcm such interact ions i s  determined in the same way as 

is  the change i n  e lec t ronic  energy: Since the  electronic 'energy is  lowered 

by overlap of o rb i t a l s  w i t h  l ike  sign, the energy is  decreased by bringing thz 

atoms together; thus, thz atws are a t t r ac t ed  t o  each other  by bondir!! - i n t e r -  

actions.  Conversely, the electronic  energy is increased when o rb i t a l s  of 
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opposite s ign  overhp,  as shown i n  Fig. 2(b); under such circumstances, 

t he  atoms repel each other  by antibonding interact ions,  This conponent 

of bonding betwee’n atoms can be calculated, therefore, f ron  the same two- 

center  i n t eg ra l s  t h a t  determine the change i n  e lectronic  energy. The co- 

hesive energy t h a t  r e su l t s  can be considered e i t h e r  as the sum of interac-  

tions’between atoms o r  as the net change i n  energy of the electrons.  

Atomic ----- s s t a t e s .  The two-center approximation thus provides a means 

f o r  computing the  electronic  energy bands i n  a so l id  and, a t  the  same time, 

indicates  t he  nature of the bondin! between atoms. For example, the in t e r -  

ac t ion  Gtween the c e n t r a l  atom and each of i t s  nearest  neighbors i n  Fig. 1 

can be represented by t h e  quantity 

s soa= j’qg ( r -a )v ( r -a) cp, ( r ) 

i n  which the  symbol ssua indicates a sigma in te rac t ion  between two s func- 

t ions  on atoms a distance a apart .  (Similar nomenclature will be used later 

for the  two-center in tegra ls  representing interact ions be tween other  atomic 

functions.)  

the e lec t ron  r e l a t ive  t o  i t s  energy i n . a n  i so la ted  atom is a simple sum bf 

I n  the  two-center approximation, the t o t a l  change i n  energy of 

the  contributions f r o m  interact ions b e t e e n  one o r b i t a l  and a l l  nearby orbi-  

tals. Since the  o r b i t a l  on the c e n t r a l  atom i n  Fig. 1 has the same phase, 

indicated by the plus sign, as those on the six neighboring atoms, it forms 

bonding sso interact ions with each of these o rb i t a l s .  As a result, the energy 



18 

n 

O b  



of the  c r y s t a l  wave function, represented i n  the f igure  f o r  k=O, i s  depressed 

by 61ssaa[ from the  energy of the s state i n  the  free atom. 

When the momentum of the  c r y s t a l  wave funct ion d i f f e r s  from zero, 

the o r b i t a l s  on atoms at  l a t t i c e  si tes R .  have t o  b? multiplied by appro- 

priate phase fac tors ,  exp(ik-R.) .  Crystal wave functions t h a t  result are 

i l l u s t r a t e d  schematically i n  Fig. 3 f o r  wave vectors  at  the Br i l lou in  zone 

- 3 - 
J 

boundaries, k= (1,0,0 h/a, k= (I, l,O)v/a, and k= (1,1,l)v/a, of a simple cubic 

c r y s t a l  with l a t t i c e  spacing a. 

changes by. etiT=-l f o r  every l a t t i c e  t r ans l a t ion  4- a along t h e  x di rec t ion  i n  

the  crystal, but it is the same f o r  a l l  atoms in each y-z plane. 

When k=(l,O,O)n/a, Fig. 3(a), the  phase f a c t o r  

- 
The f o u r  

nearest neighbors i n  the y-z plane have the same s ign  as the  c e n t r a l  atoms 

and are again i n  bonding configuration. Orbi ta ls  on the two atoms a t  (?a, 0,O) , 
however, have the opposite sign; thus,  they are i n  antibonding configurations 

r e l a t i v e  t o  the one on the c e n t r a l  atom. 

in te rac t ions  provide a ne t  contr ibut ion of two bonding ssu in te rac t ions ,  

The f o u r  bonding and two antibonding 

The 

state k=(1, O,O)v/a is, therefore,  only one-third .as s t r o i g l y  bonded as the 

state k=O. 

When k=(l,l,O)T/a, the s f w c t i o n  on each a toa  is i n  bonding configura- 

t i o n  with two of i t s  nearest  neighbors at  (O,O,ka) and i n  antibonding configura- 

t i o n  with fou r  a t  ( z a , O , O )  and (O1fa ,O)  - t o  produce a net contr ibut ion of two 

antibonding S S Q  in te rac t ions .  When k=(l ,  1,1)r/a, the s funzt ion on each atom 

pa r t i c ipa t e s  i n  six antibonding ssa in te rac t ions  with i t s  nearest  neighbors, 

Equivalent results, of necessity,  are obtained from d i r e c t  calculat ions of the 
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Tsblt? I 

. - 
k (uni ts  of r/a) Energy_ 

s 0 +6ssua 

s +2ssua 

s -2ssaa 

s 0 &sua 

0 

0 

Net ssu bonding wi th  
nearest  neighbors -- 

6 bonding 

2 bonding 

2 antibonding 

6 antibonding 

Table I: Electronic  energy and atomic bonding of s functions 

i n  a simple cubic l a t t i c e  calculated by the  nearest-  

neighbor, two-center, LCAO approximatiqn. So i s  approxi- 

mately the energy of the s state i n  an i so l a t ed  atom. 

P 
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energy using the nearest-neighbor two-center X A O  approximation, which pro- 

vides the mathematical basis f o r  t h i s  descr ipt ion of bonding. Energies 

calculated in  t h i s  way f o r  c r y s t a l  wave functions formed from an atomic s 

state are  l i s t e d  i n  Table I f o r  points i n  the Bril louin zone a t  which the 

bonding has been discussed. The degree of  bonding between s functions on 

nearest  neighbor atoms i s  l i s t e d  f o r  comparison. 

A t  an intermediate point i n  the Bri l louin zone, k=(k , k  ,kz), the 
X Y  

wave functions are multiplied by complex phase factors ,  exp(ik*Rj). The re- 

sult is not readi ly  presented p ic tor ia l ly ,  but the energy and bonding can be 

calculated d i r ec t ly :  Wave functions on the two atoms a t  (ka,O,O) have phase 

f ac to r s  exp(l-ik a) and the sum of interact ion between these two wave func- 
X - 

t ions  and the one on the cen t r a l  atom is ssu,[exp(ikxa)+exp( -ikxa) ]=2ssa,coskxa. 

SFmila.rly, wave functions on the two atoms a t  ( O , z a , O )  have phase fac tors  

exp(+ik a> and the sum of t h e i r  interactions with the wave function on the  cen- 

t ra l  atom is 2ssaacosk a. 

bute 2ssuacosk a. 

therefore, 2ssaa(cosk a+cosk a+coskza). 

t inuously through the Bri l louin zone from the lowest engrgy (strongest bondiog) 

a t  k=O t o  the highest energy (strongest antibonding) a t  k=(l , l , l ) r /a .  

- Y  
I n  the same way, the two atoms a t  (O,O,za)  cont r i -  

Y * 
The t o t a l  interact ion with the six nearest  neighbors is, 

2 

The energy and bonding thus vary con- 
X Y 

Atomic p s t a t e s .  If the outer  atomic s t a t e s  are p s ta tes ,  the energy of 

c r y s t a l  wave functions formed from them and the  bonding interact ions between them 

vary with momentum i n  a d i f f e ren t  way. 

t h a t  is, the three s t a t e s  with wave functions xf(r), yf(r), and z f ( r ) ,  have the 

The atomic p state i s  t r i p l y  degenerate, 
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same energy i n  the  f r e e  atom. 

the  ppa and the ppsr i n t e rac t ions  i l l u s t r a t e d  i n  Fig.  4. 
shown i n  G or i en ta t ion  are i n  the  ppa antibcnding configurat ion whereas the 

7~ or ien ted  funct ions a r e  bonding. Not$, however, t h a t  the G oriented func- 

t i o n s  would become bonding and the  TI- oriented functions antibonding by rever- 

Two types of p-p in t e rac t ions  a r e  possible,  

The p funct ions 

s i n g  the  

t ice  f o r  

s igns of one func t ion  i n  each pa i r .  

Fig. 5 shows the configurat ion of p funct ions i n  a simple cubic lat-  
X 

k=O. Qhe c e n t r a l  atom i n t e r a c t s  with i ts  neares t  neighbors along 

the x axis t o  form two antibonding ppa bonds, and forms fou r  bonding pp17 bonds 

with neares t  neighbors i n  its y-z plar,e. 

same way a t  k=O; the p func t ions  remain t r i p l y  degenerate f o r  t h i s  value of 

The p and p, funct ions behave i n  the Y 

momentum. Fig.  6 shows the configurat ion of px funct ions a t  k=(l,O,O)rr/a. 

t h i s  case, the c e n t r a l  atom again makes four  bonding pxr in t e rac t ions  with 

neighboring atoms i n  i t s  y-z plane, but nov is  i n  bonding p p ~  configuration 

wi th  the two neighboring atoms i n  the x d i rec t ion .  The p functions behave 

In 

Y 
quite a d f e r e n t l y ,  as shown i n  Fig.  7. The py funct ion on the c e n t r a l  atom 

makes two antibonding p p ~  i n t e rac t ions  i n  the  - +x d i rec t ion ,  two bonding ~ x r  

i n t e rac t ions  i n  the  - +z d i rec t ion ,  and two antibonding ?pa i n t e rac t ions  i n  the 

+y d i rec t ion .  

t he  px funct ions are i n  bonding configuration a t  t h i s  point  i n  the BriLlouin 

zone. 

d i r e c t i o n  i n  the Bri1louin”zone. 

Thus, the p funct ions a r e  antibonding a t  k=(l,O,O)r/a, whereas 
Y - 

The p, funct ions a r e  degenerete with the p funct ions along the  (.1,0,0) 
Y 



W 
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Atomic d states. Three types of interact ions are possible f o r  d 

functions, dda, ddr, and dd6, as illustrated i n  Fig. 8, The in te rac t ion  

of two d functions frequent ly  involves all three types of bonding. 

tudes of the  separate contributions can be calculated by resolving the 

Magni- 

% 

functions i n t o  Q, 71; and 6 components. The results .are available i n  

Table I of the paper by S l a t e r  and Koster (13). 

Hybrid in te rac t ions .  When outer  e lec t ronic  s t a t e s  of d i f f e ren t  

symmetry have comparable energies in  the i so la ted  atom, it is no longer 

possible t o  Gonsider separately the c r y s t a l  wave functions derived from 

these states because in te rac t ions  between them are possible f o r  ce r t a in  

values of t h e i r  momenta. 

functions become hybridized and contain contributions from each of the inter- 

As a result of such interact ions,  the c r y s t a l  wave 

ac t ing  states. 

from the n atomic s t a t e s ,  cpm(r), is  then wr i t ten  as a sun of Bloch func- 

tions, Qm(k,r) : 

Each of the  n d i f f e ren t  c r y s t a l  functions, Yn(k,r), formed 

in which 

as f o r  the s functions discussed before. I n  t h i s  case, however, t he  Bloch 

functions, 4 (k,r), have t o  be constructed, not from simple atomic functions, 

but from appropriate conbinations of the atomic function on the c e n t r a l  atom 

m .. 

and other  functions on the  surrounding atoms e 

binations r e t a i n  the symnetry of the wave function on the cen t r a l  atom; 

These (orthcgonalized) com- 
c 



rn 

I 
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consequently, they w i l l  be re fer red  t o  as s p  px, a e e ,  d 

as though they were simple atomic o r b i t a l s .  

. . e , functions,  
XY 

The in t e rac t ions  which cause hybridizat ion a re  represented by two- 

center  i n t eg ra l s ,  spa, sda, pda, pdr, similar t o  those which descr ibe i n t e r -  
- 

ac t ions  betwsen l i k e  o r b i t a l s .  In te rac t ions  between unlike o r b i t a l s  occur 

only when t h e i r  s p a t i a l  symmetry propert ies  a r e  appropriate f o r  the  momentum 

of the c r y s t a l  wave funct ion,  and the resulting e f f e c t s  are important on ly  

when bands derived from the unperturbed states have approximately equal  ener- 

g i e s .  Thus, s funct ions i n t e r a c t  with p funct ions when both have momenta 

(O<lkl<.rr/a) along the [1,0,0] d i r e c t i o n  of a cubic crystal, but not when t h e i r  

momenta a r e  i n  the [0,1,0] o r  [O,O,l] di rec t ions .  Hybridization of s and px 

funct ions can be represented schematically f o r  a face-centered-cubic crystal 

X 

as follows: The unperturbed s states form c r y s t a l  wave funct ions which have 

the configurat ion shown i n  Fig.  9 f o r  k=(1/2,0,0).rr/a. Similarly,  the unper- 

turbed px funct ion has the configurat ion shown i n  Fig. 10 f o r  the same value 

of momentum. 

ca lcu la ted  by summing in t e rac t ions  between the c e n t r a l  atom and i t s  neares t  

The energies ,  Es and E of these c r y s t a l  wave funct ions can be 
P' 

neighbors, as w&s done previously f o r  the simple cubic. l a t t i c e .  The results 

are avai lable ,  f o r  a genera l  point  of the  Br i l lou in  zone, i n  Table 1x1  of the 

a r t i c l e  by S l a t e r  and Koster (13): 
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(I 
\ 

I , 
I 

0 

Fig. 11. - Electronic  energy .bands along the  d i rec t ion  k=(kh,O,O) i n  the  
Bri1loui.n zone of a face-centered-cubic c r y s t a l  with l a t t i ce  constant 2a. 
Atomic s and px functions mix t o  form hybrid crystal wave functions.  
of these hybrid functions are displaced from the  energies of c r y s t a l  wave func- 
t i ons  formed from pure s and pure px atomic o r b i t a l s  by amounts determined by 
the degree of mixing. 
t h i s  d i rec t ion  i n  the  Br i l lou in  zone, but they do i n  c r y s t a l  mve  functions 
t h a t  have momenta along the d i rec t ions  of t h e i r  respective pr inc ipa l  axes. 

Energies 

p and pz furletions do not ffiix w i t h  s functions along Y 
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where [=akx, q=aky, e"akz and s 

atomic s and p states. 

k=(kx,O,O) a r e  shown by t h e  dashed l i n e s  i n  Fig. 11. 

and po a r e  approximately t h e  energies of t h e  

Energy bands calculated i n  t h i s  way f o r  momenta along 

0 

Mhen hybridization of these s t a t e s  occurs, the  vave funct ions contain 

both s and p: components, with the  p-component carrying a phase f a c t o r  

exp(W/2)=+i r e l a t i v e  t o  t h e  s componento 

on t h e  cen t r a l  atom i n t e r a c t s  with the  s component of t he  wave function on sur- 

rounding atoms i n  one of t h e  two ways shown i n  Fig. 12  (a )  o r  (b).  The bonding 

s p ~  in te rac t ions  i n  (a) occur i n  t h e  band of lover energy and depress i t s  energy 

a t  k=(l/2,0,0)7r/a. by (8 /J2)sp0  times t h e  product of t he  amplitudes of t h e  s 

and p 

of higher energy and r a i s e  i t s  energy by the  same amount. 

X 

The p component of t h e  wave function 
X - - 

functions,  whereas t h e  antibonding in te rac t ions  i n  (b) occur i n  t h e  band 
X 

Since both hybrid s t a t e s  contain s and p components, calculat ion of 
X 

t h e i r  energies proceeds by solving simultaneous equations for t h e  energy, E, 

of each s t a t e :  

(Hss-E)als +H sp a l p  =O 

H a. +(H -E)a 4, PS ZP PP 2p 

i n  which a 

i n  one hybrid c rys t a l  wave function, and a a a r e  t he i r  amplitudes i n  t h e  

other. 

between an s function on" t h e  cen t r a l  atom and s functions on neighboring atoms, 

vhereas H i s  t h e  sum of in te rac t ions  between an s function on t h e  cent ra l  atom 

and a a r e  t h e  amplitudes of the  s and px functions, respectively,  
Is 1P 

2s' 2p 

The matrix component of energy Hss i s  simply t h e  sum of in te rac t ions  

SP 
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and p functions on i ts  neigkb0rS. H (=H ) and H a r e  t h e  corresponding sums 

%or a p funct ion on the  c e n t r a l  atom. These sums (matrix components of 

energy) are tabulated f o r  cubic c rys ta l s  i n  Table I11 of the a r t i c l e  by 

X PS sp  PI? 

X 

S l a t e r  and Koster (13). 

hexagonal c rys t a l s '  a lso.  

Miasek (23 )  has l i s t e d  the appropriate sums f o r  
- 1  

Energy bands calculated i n  t h i s  way f o r  hybrid s-px bands are shown 

f o r  momenta along k=(kx,O,O) by t h e  s o l i d  l i nes  i n  Fig,  ll. Y 
funct ions do not mix w i t h  s functions along t h i s  d i rec t ion  i n  the Bri l louin 

The p and p, 

zone. . 
Hybridization does not  a f f ec t  the cohesive energy s o  long as both of 

the states which i n t e r a c t  are occupied by electrons,  s ince equal numbers of 

s t a t e s  are ra i sed  o r  lowered by equal amounts. If t he  s t a t e s  of higher energy 

are vacant, however, hybridization increases the cohesion by causing an  uncom- 

pensated increase i n  the  bonding of lower states. Such an e f f e c t  i s  i l l u s -  

trated i n  the hybrid s-p bands of Fig. 11. If the  numkr of e lectrons per 

atom is less than two, states of t he  lower band only are occupied and hybri- 
X 

d iza t ion  increases cohesion by increasing the  s t rength  of bonding of e lectrons 

i n  the  lower band. If t h e  Fermi l e v e l  lies above the ' t op  of the  p.band at  

I'l,-, however, both the  s and p bands are occupied and no ne t  change i n  cohesion 

results from the  s-p hybridization because 'the increased bonding of the  lower 

states i s  cancelled exac t ly  by weakened bording i n  the upper states. 

P 
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t 

I 

a 

I 

I 
I 

Fig. 1;. - Energy bands along two d i rec t ions  c5 high symmetry, A and A, i n  
the Bri l louin zone of Tic ,  calculated using tk simpl i f ied  LCAO method of 
S l a t e r  and Koster (Ref. 10).  
on the l i n e  from I' (k=O) t o  X (k=(l,O,O)v/a). 
from I' t o  L (k=(1/291/2,1/2)7~. 
Rev. 141, 622 (1966) 1 

A designates poir:s i n  the f c c  Br i l lou in  zone 
A designates points  on the  l i n e  

[From R .  G .  Lye and E: M. Logothetis, Phys. 
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F 

!- 
Fig. 14. - Density-of-states histogram for T i c  derived from the band s t ruc ture  
of Fig. 13. Fermi levels are indicated for six,  Seven, and eight electrons 
respectively.  [From R .  G .  Lye xi.d E, M. Logot;hetis, Phys, Rev., 147, 622 
(1966) 1 



- 33 - 



- 34 - 

The energy band s t ruc ture  of T i c  w a s  calculated by Lye (17) accord- 

ing t o  the approach outlined i n  Section I1 but using, i n  addition, t he  fu r the r  

s impl i f ica t ion  suggested by S l a t e r  (13) : Instead of attempting tedious and 
c - 

uncertain calculat ions of values for the two-center 

g r a l s  were used as adjustable paramsters which w e r e  

puted band s t ruc ture  agree wtth experimental data.  

integrals,  these i n t e  - 
varied t o  make the  com- 

Keasurements of the near- 

normal-incidence r e f l e c t i v i t y  (17) providzd energies of prominent o p t i c a l  

t r ans i t i ons  to,which tke calculated band energies had t o  be adjusted. Other 

information a s  provided by s tudies  of the energy dependence of photo- 

emission (l?), and by measurements of the Hall coef f ic ien t  (24,25) resisti- 

v i t y  (24), piezoresistance (26), and themoelec t r ic  power (27). 

The energy band s t ruc ture  obtained by t h i s  method is shown i n  Fig. 13 

for direct ions i n  the Bri l louin zone from the  center, I?, t o  boundary points 

X and L at (l,O,O)n/a and (1/2, 1/2,1/2)~/a respectively.  A tota;  density- 

of-states curve obtained f rm the same calculat ion i s  shown i n  Fig. 14, and 

bindividual’density-of-states curves are shown i n  Fig. 15 f o r  the atomic s t a t e s  

from which the c r y s t a l  wave functions were derived. 

The energy band s t ruc ture  determined by t h i s  rnetizod d i f f e r s  from t h a t  

obtained by B i l z  (E), shown i n  Fig.  16, i n  two important r e s p c t s .  

the 2p bands of carbon, which a re  labeled r 
zone l i e  8 eV above the eaergy calculated by Bilz, 

in the  density-of-states curve of Fig.  15, the d band is far  broader than tha t  

computed by Si lz .  

F i r s t ,  

a t  the center  of the Br i l l ou in  
15 

Second, as indicated a l s o  

F 
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Elevation of the 2p s t a t e s  is a consequence of severa l  effects, 

Par t  of t h i s  elevation, 4 eV, results simply from using the energy of the  

atonic p s t a t e  of carbon instead 

and oxygen adopted by Bilz. The 

s t ruc ture  r e s u l t  from the  use of 

of the averaged value of carbon, nitrogen, 

f a c t  t ha t  pronounced changes i n  the  band 

a d i f fe ren t  value f o r  t h i s  energy demon- 

s t r a t e s  t h a t  no s ingle  energy band s t ructure  can be used t o  represent, with 

useful accuracy, the  three couqounds, Tic ,  TiN, and TiO. 

Further e levat ion of the 2p s t a t e s  (1.5 eV)  r e su l t s  from the use of 

ppa interact ions between carbon 2p orb i ta l s  somewhat stronger thzn those em- 

ployed by B i l z .  The modification can be Jus t i f i ed  i n  the same way as is  done 

l a t e r  f o r  the 3-33 interact ions i n  the discussion of the breadth of the  

d-band. 

Titanium 4p-wave functions, which were not considered by Bilz, i n t e r -  

act with the carbon 2p states and lov t r  t he i r  energy at  the  center of the 

Bri l louin zone, l”, by approximately 0.4 eV. An addi t ional  e levat ion of 

2-77 eV is necessary, therefore,  t o  account for  the op t i ca l  propert ies  of 

Tic, and a similar displacement i s  required f o r  the carbon 2s s t a t e s .  If t h i s  

remaining elevat ion of carbon s t a t e s  re la t ive  t o  the t i tanium s t a t e s  i s  a t t r i -  

buted so le ly  t o  e l e c t r o s t a t i c  e f f ec t s  determined by the bbdelung poten t ia l  

difference,  2me2/a (28,16), it corresponds t o  a charge transfer of approxi- 

mately 0.15 electrons from carbon t o  titanium atoms. 

charge t r ans fe r  needs t o  be determined more precisely, but the  present e s t i -  

mate indicates  t h a t  ionic bonding contributes only a small f r ac t ion  (- I-$) of 

The magnitude of the  

c 

the  t o t a l  cbhesive energy, 327 kcal/u?ole calculated from thermodynamic proper- 

t ies (29-31). 



Broadening of the d-band may be explained on the basis of work 

They showed t h a t  d-d interact ions between metal by Costa 'and Conte (14). 

atoms .are strengthened markedly by the poten t ia l  of carbon atoms i n  the octa- 

hedral  inkers t ices  of the f c c  t i tanium subla t t ice .  By similar arguments, it 

is expected t h a t  other  metal-metal and carbon-carbon interact ions may be some- 

what s t ronger  than the  values sugges+,ed by Bilz. 

As a result of the strong d-d interact ions,  bonding s t a t e s  of the  

d-band are depressed i n  TIC t o  energies lower than they would have i n  

(hypothetical) fcc  titanium, o r  i n  normal hcp titanium metal. 

of these low-lying d states contributes grea t ly  t o  the t o t a l  cohesion. Suffi- 

c ien t  numbers of the  states are avai lable  t o  accept not only the  3d electrons 

o r ig ina l ly  on the t i tanium atom, but a l s o  some of the 4s electrons of titanium 

and soae G f  the  2p e l e c t r w s  zf carban. The 6ensi+u;.-o%-st%tes c m e s  of 

Fig. 15 indicate  t h a t  the  e lec t ronic  configurations of the  atoms i n  T i C  are 

approximately ( 2 ~ ) ~ ( ~ ) ~ / 4  f o r  carbon, and (3d) (4s) 3p(4p)1/2 f o r  titanium. 

Since the  i so la ted  atoms have the configurations (2s) (2p) 

it appears t h a t  approximately 1 1/4 electrons have been t ransfer red  from carbon 

The presence 

2 2  2 2  
and (3d) (4s) , 

2p states t o  leve ls  derived from ti tanium atomic s t a t e s .  The ne t  charge trans- 

fer, however, is  less than this amount because the metal wave functions overlap 

again onto the carbon atom sites.  
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IV. Bonding i n  Titanium Carbide. 

Although the calculated band s t ructure  i s  ten ta t ive  and'subdect t o  

considerable refinement by more precise methods of analysis, it may be used 

t o  provide a preliminary in te rpre ta t ion  of the bondi'ng i n  titanium carbide. 
. 
% 

A qual i ta t ive  descr ipt ion of the  bonding may be obtained by considering the  

amplitudes and interact ions of atomic functions present i n  the  computed 

c r y s t a l  wave functions associated with occupied electronic  s t a t e s .  

functions haye been examined i n  t h i s  way f o r  points i n  the  Bri l louin zone 

along the d i rec t ions  r-X and r-L i n  the energy bands of Fig. 13. 

Wave 

The results 

suggest the p o s s i b i l i t y  of constructing equivalent o rb i t a l s  i n  the manner 

proposed by H a l l  (1) and S l a t e r  (2).  For the present, however, only cont r i -  

butions t o  bonding f r o m  individual  atomic and s h p l e  hybrid o rb i t a l s  will be 

described. 

It w i l l  be noted tha t  carbon 2s states contribute l i t t l e  t o  the b n d -  

ing; they are almost completely occupied (Fig, '15) and, consequently, con- 

tr ibute almost as many antibonding as bonding interact ions.  The bonding they 

do contribute results primarily from e f fec t s  of hy'oridization w i t h  carbon 

2p states near k=(1/2,0,0)7r/a and with metal 3d, 4s, and 4p s t a t e s  near the 

Bri l louin zone boundaries. 

The t i tanium 3d electrons contribute t o  the bonding through simple d-d 

interact ions and through_ s-d and p-d hybridization. Th.e. e f f ec t s  of such 

hybridization may be i l l u s t r a t e d  by considering first the simple d-d interact ions.  
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2 2  Fig. 17. - Bonding in te rac t ions  between dy orb i ta l s ,  with symmetry 3x -r , at 
the  Br i l lou in  zone boundary Ir=(l, O,O)n,’a of T i c  ( l a t t i c e  cQnstant 2a).  
four o r b i t a l s  ‘ i n  the y-z plane each form 1.!4 dda+3/4 dd6 bonding in te rac t ions  
w i t h  the  cen t r a l  o r b i t a l .  The e ight  o r b i t a l s  at  (+a,za,O) and (?a,O,Ca) each 
form 3/11 ddn- bonding in te rac t ions  and 1/16 ddcj+3/lg dd6 antibonding i n t e r -  
act ions.  Most of the bonding i s  provided by the dd?r contributions.  

The 
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one of t he  major c o n t r i b % i o r i s  to &-b&ii bonding a r i s e s  fra;l hbL2c%j.ars 

near the Br i l lou in  zone -GWL*W at I! (k=(l,o,O)lT/a) between 3d 

3x2-r2 symmetry , 

ddr component of l n t e r a c t i c n  &tween t h e  orbitals at (za,ka,o) arrf. (.t.. - J 0 I ,  *) 

and t h e  c e n t r a l  o r b i t a l  provides most of the  bonding n3ar X, but 

n e t  antibonding i n t e r a c t i o n  at  I'12e These 3d o rb i t a l s  hybridize 4s 

o r b i t a l s  near x, thereby  inc reas ing  the  cohesion because the  upper hybrid 

s t a t e s  are vacant.  The energy of 3d -4s hybrid s t a t e s  i s  lowered through r 
i n t e rac t ions  l ike-  those shown i n  Fig. 18 f o r  k=(l,O,O)T/a. 

orb@+ a c~L2.s pith  r 
3- T h e i r  co rz igu ra t ion  at  X is i l l u s t r a t e d  i n  FQ, 1-7. ~ 3 2  

t~ a 

Y 

In addi t ion,  the 3d s t a t e s  a r e  depressed near k=(1/2,0,0)77/a as a r 
result of in-tleractions with carbon 2p s t a t e s ,  as shown i n  Fig. 19. Such 

i n t e rac t ions  cont r ibu te  t o  me tal-carbon bonding and further increase the  co- 

X 

hesion s ince the  upper hybrid s t a t e s  again a r e  la rge ly  unoccupied. 

considerable hybr id iza t ion  of these s t a t e s  OCCUTS with carbon 2s s t a t e s  

also, no net  change i n  cohesion r e s u l t s  &cause both hybridized s t a t e s  are 

occupied. 

labe led  A,, *A,, and A, i n  Fig. 134 

Although 

Energy l eve l s  assoc ia ted  with these  s t a t e s  f a l l  i n  the  bands 

1 3 

Very s i m i l a r  i n t e rac t ions  occur along the (l,l,l) d i rec t ion  i n  the  

B i l l o u i n  zone with 3& o r b i t a l s  formed from l i n e a r  combinations of dG mve 

funct ions.  The r e s u l t i n g  

i n  Fig.  17 but have t h e i r  

o r b i t a l s  have Vile sa& shape as those i l l u s t r a t e d  

p r i n c i p a l  axes d i rec ted  along body diagor,als i n  the  
c 

-!+ 
The d funct ions form tvo groups i n  a cubic c rys t a l ,  the  three dE functions,  
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W 

U 

\ 



Fig.  21. - I so l a t ed  view of the d o r b i t a l s  at (O,O,O), (a,O,a), and (O,-a,a) i n  Fig.  20. yz 
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crystal. Interact ions between them are strongly bonding, and again, they 

hybridize with ks and 2p o rb i t a l s  t o  incr2ase the bonding fur ther .  Energy 

1 2  3 Al, and A,. 1' l e v e l s . f o r  these states f a l l  i n  the bands A 

Additional . -  d-band bonding arises along the (1,0,0) direct ion of the 

Bril louin zone from interact ions between de o rb i t a l s  with yz symmetry. 

strongly bonding configuration a t  the zone boundary X (k=(l,O,O)r/a) is  

The 

i l l u s t r a t e d  i n  Fig. 20. 

contribute a strong component of dda bonding and a weak component of dd6 

The cent ra l  o r b i t a l  and the orb i ta l s  a t  (O,:a,+a) - - 

bonding, whereas the  o rb i t a l s  at  (+a,+a, - -  0) and (:a, 0, :a) 

ddr  bonding and weak dd6 an t ibnding  interact ions.  

a t  (0,-a,-a) and (a,O,a) with the o r b i t a l  at  (O,O,O) is emphasized i n  Fig. 21. 

These o rb i t a l s  do not i n t e rac t  with 455, 2s or 2p orb i ta l s  along the (1,0,0) 

direct ion i n  the Bril louin zone. 

l i e  i n  the band A2 t .  

contribute strong 

The bonding of o rb i t a l s  

Energy levels  associated with these orbitals 

Additional metal-metal bonding i s  contributed by the 4s orb i t a l s  i n  

c rys t a l  wave functions with momenta near k=O. 

zation occurs between 4s and 2s orb i ta l s ,  l i t t l e  net  change i n  cohesion re- 

sults frorn the mixing because both hybrid s t a t e s  a re  occupied near 'the center 

of the zone. 

Although considerable hybridi- 

A small component of metal-metal bonding is  contributed a l so  by the 

4p orb i t a l s  of titanium, which a re  unoccupied i n  the  f r ee  aton but become 

occupied near the zone boundaries i n  the  so l id .  

pied, however, only i n  hybrid wave functions i n  which they are a minor 

The 4p orb i t a l s  a re  occu- 
J 
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component. Their contr ibut ion t o  t h e  bonding may be i l l u s t r a t e d  through 

the influence they exert on the  more impo-rtant carbon-carbon bonding of 

2p o rb i t a l s .  
\ . -  

Strong carbon-carbon bonding i s  contributed by 2p o rb i t a l s  i n  small 

regions of the  Bri l louin zone near the boundaries at X and L. 

bonding configuration is shown i n  Fig. 22 f o r  2p o rb i t a l s  with momenta near 

X (k=( l , O , O ) r / a ) .  o r b i t a l s  contribute similar, but  weaker, metal- 

metal bonding in te rac t ions .  I n  addition, however, they hybridize with car- 

A st rongly 

X 

Metal kp 
X 

. 
bon 2px o r b i t a l s  and increase the cohesion through the r a u l t i n g  carbon- 

metal in te rac t ions  s ince the lower hybrid s t a t e s  only a re  occupied. The 

bonding 2p -4p Occupied 2p and 4p s t a t e s  

thus contribute carbon-carbon, metal-metel, and carbon-metal bonding i n t e r -  

actions.  

band close t o  X. 

i n t e rac t ion  is  shown i n  Fig.  23. x x  

%, Energy leve ls  belonging t o  these s t a t e s  l i e  primarily i n  the 

Carbon 2p o r b i t a l s  a re  occupied a t  the  zone boundary near L also.  

The bonding o r b i t a l s  have t h e i r  lobes directed along body diagonals of the 

crystal and contr ibute  s t rong carbon-carbon bonding interact ions.  They 

in t e rac t  a l so  with dE funct ions of symmetry xy-t-yz+zx (lobes directed along 

body diagonals) t o  increase f u r t h e r  the carbon-Ectal bonding. Hybrid states 

1 associated with these 2p-3a in te rac t ions  l i e  primarily i n  the bands 

'A near 1;. 

A and 

Additional garbon-metal bonding i s  contributed by 2s-b.p in t e r -  

1 

1 
2 act ions i n  the band A near L. 1 



- 49 - 

\ V. Discussion. 

The bonding of TIC, as inferred from the empirical band s t ructure  

discussed here, contains contributions from metal-netal, metal-carbon, carbon- 

carbon, and ionic interactions,  and the composite nature of t h i s  bondlng is 

re f lec ted  i n  i t s  properties.  Prominent metal-metal interactions,  f o r  example, 

cause many of the physical properties of T i c  t o  be similar t o  those of the  

t r ans i t i on  metals. It might be expected, therefore, t h a t  the properties of Tic 

would'bg closely re la ted  t o  those of i t s  parent netal ,  titanium. 

these metal-metal interact ions are modified by two effects  : 

bond strengths are increased by the potent ia l  of carbon atoms i n  the region 

cf o v e r h p  between metal orbi ta ls ,  and (ii) the  number of electrons pa r t i c i -  

pating i n  such 30n6.s is Increased by t ransfer  of electrons frm carbon t o  

metal atomic orb i ta l s .  

I n  Tic ,  howevsr, 

(1). Ivktal-Eetal 

This e lectron t ransfer  would be expected t o  make T i c  more l ike  vana- 

dium or chromium than titanium, but the enhanced metal-metal interactions pro- 

bably increase its melting point and strength t o  values beyond those of the 

first se r i e s  t r ans i t i on  metals, i n  much the same way tha t  stronger metal core 

potent ia ls  increase the bonding of heavier t rans i t ion  ELtals within each group. 

Thus, the metal-rnetal interact ions alone would make T i C  a strongly bonded sub- 

stance similar t o  t rans i t ion  metals of the second ser ies .  Since the increased 

strength of the methl-metal bonds may also increase the covalent character in -  

t r i n s i c  t o  interactions &tween p a r t i a l l y  occupied-orbitals, TiC would be 
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exp?cted t o  have hardness and s t rength  similar t o  those of the harder t ran-  

s i t i o n  metals. 

and these metals indicate,  however, t h a t  the other contributions t o  bonding 

m u s t  a l s o  play a s ign i f i can t  ro le .  Although the ionic interact ions may in-  

fluence c e r t a i n  p r o p r t i e s ,  th2y appear t o  contribute l i t t l e  t o  the bonding. 

Metal-carbon and carbon-carbon interact ions,  on the. other  hand, provide 

covalent components of bonding which together contribute subs tan t ia l ly  t o  the 

grea t  hardness, b r i t t l eness ,  and high ne l t ing  point exhibited by T i c .  

The nature and magnitude of observed differences between TiC 

The e l e c t r i c a l  c o n d x t i v i t y  and other  t yp ica l ly  metall ic t ransport  

propsrties of TIC appear t o  arise priuiarily from the presence of 8 small con- 

duction band near  r 
been anticipated,  from the  overlapping bands t h a t  have subs tan t ia l ly  4s 

d e n i e d  from ti tanium 3dE states ra ther  than, as had 
2 ' 5  

c h a r a c t e r .  Details of the band structwre near the Fxmi l e v e l  2re not c lear ly  

established, however, so t h a t  other e l e c t r o n  and hole bands can not be ex- 

cluded f r o a  consideration. 

The band s t ruc ture  discussed here suggests t h a t  bonding i n  T i c  is 

determined p r i n a r i l y  by metal-metal interact ions similar t o  those i n  the "hard." 

t r a n s i t i o n  metals, wit'n addi t iona l  covalent bonding contributed by interact ions 

involving carbon atoms. Thus, t h i s  method of analysis appears t o  substant ia te  

the proposals made by Kiessling and Robins rat'ner than t h a t  of Rundle. 

This i n t e rp re t a t ion  of the  bonding i n  T i c  f r o u  i t s  band s t ruc ture  may 
c 

be used as a bas is  f o r  discussing the bonding i n  other cubic re f rac tory  hard 

metals also. T i N  and TiO, for example, a re  expected t o  exhib i t  bonding proper- 

t i e s  t h a t  d i f f e r  from those of TiC mostly because of differences i n  the energies 
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of the electronic  s t a t e s  i n  t h e i r  nonmetal atoms. 

states of nitrogen l i e  2.5 e V  lower than the 2p s t a t e s  of carbon, t h e i r  

Eecause the 2p atomic 

degree of hybridization with 3d and 4s s t a t e s  of titanium i n  TiN may be 

somewhat grea te r  than i n  T ic ,  and the charge t ransfer  betwe?n atoms may be 
... 

smaller 

may contribute smewhat more t o  the bonding i n  T i N  than do the corresponding 

Nitrogen -nitrogen and n i t  roge n-metal in te rac t  ions, consequent ly, 

interactions i n  T ic ,  whereas the ionic contribution is expected t o  be weaker. 

On the other hand, the more prominent bonding properties, which a r i s e  from 

metal-metal interactions,  should be similar i n  the two compounds. 

The 2p atomic s t a t e s  of oxygen are  5.2 e V  lower than they are i n  

carbon; thus, the 2p bands of Ti0 are expected t o  overlap the lower portion 

of the metal 3d bands. The large number of low-lying 2p s t a t e s  w i l l  g e r m i t  

the t ransfer  of electrons from - t i t an ium t o  - oxygen s ta tes ,  thereby decreasing 

the bonding due t o  d-d interactions'.  Conversely, oxygen-oxygen and titanium- 

oxygen bonding w i l l  be strengthened, both by the greater  number of occupied 

2p states, and by the greater  degree of hybridization tha t  will result from 

the proximity of the oxygen 2p and metal 3d and 4s bands. Although the charge 

t ransfer  probably w i l l  be .in the direct ion opposite t o  tha t  i n  T ic ,  it may be 

substant ia l ly  larger  and so  contribute an itcportant f r ac t ion  of the t o t a l  

cohesion i n  TiO, 

It m u s t  be acknowledged tha t  the discussion of bonding presented 
c 

here has only qual i ta t ive jus t i f ica t ion .  

c losely re la ted  problem fo r  molecules and has indicated some of the d i f f i c u l t i e s  

Ruedenberg ( 3 2 )  has discussed the 
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and uncertaint ies  i n  such descriptions of bonding. Despite the l imitat ions 

of this.method, it d e s  serve t o  improve the understanding of materials with 

complex bonding, and it may be as useful  f o r  the t r ans i t i on  metals themselves 

as for compounds such as the one discussed here. 
. w 

Goodenough ( 3 3 )  has d i s -  

cussed the magnetic propert ies  of t r ans i t i on  metals and alloys f rom a re la ted  

point of view, but the or igins  of t h e i r  diverse bonding charac te r i s t ics  re-  

main souewhat obscure. 

of t h i s  problem, since numerous s tudies  have been made recent ly  of e lec t ronic  

energy bands i n  t r ans i t i on  metals. Information derived f r o m  such s tudies  

needs t o  be made avai lable  i n  a form useful  t o  metallurgists who work with 

It should be possible now t o  c l a r i f y  ce r t a in  aspects 

these materials. The close relat ionship between band s t ructure  and bonding, 

i l l u s t r a t e d  here f o r  Tic ,  may provide addi t ional  physical  insight  of' value 

for such purposes. 
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